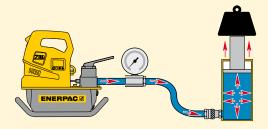


Basic Hydraulics


Flow

A hydraulic pump produces flow.

Pressure

Pressure occurs when there is resistance to flow.

Pascal's Law

Pressure applied at any point upon a confined liquid is transmitted undiminished in all directions (Fig.1). This means that when more than one hydraulic cylinder is being used, each cylinder will lift at its own rate, depending on the force required to move the load at that point (Fig. 2).

Cylinders with the lightest load will move first, and cylinders with the heaviest load will move last (Load A), as long as the cylinders have the same capacity.

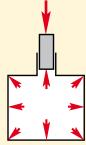
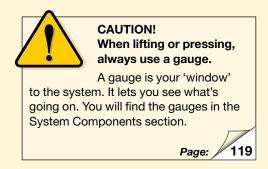
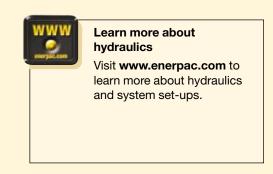
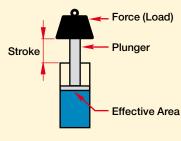
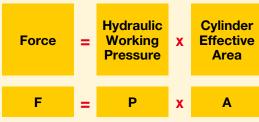




Figure 1

To have all cylinders operate uniformly so that the load is being lifted at the same rate at each point, either control valves (see Valve section) or Synchronous Lift System components (see Cylinder section) must be added to the system (Load B).




Basic Hydraulics

Force

The amount of force a hydraulic cylinder can generate is equal to the hydraulic pressure times the "effective area" of the cylinder (see cylinder selection charts).

Use this formula to determine either force, pressure or effective area if two of the variables are known.

Example 1

An RC-106 cylinder with 14,5 cm² effective area operating at 700 bar will generate what force?

Force = $7000 \text{ N/cm}^2 \text{ x } 14,5 \text{ cm}^2 = 101500 \text{ N} = 101,5 \text{ kN}$

Example 2

An RC-106 cylinder lifting 7000 kg will require what pressure? **Pressure** = $7000 \times 9.8 \text{ N} \div 14.5 \text{ cm}^2 = 4731.0 \text{ N/cm}^2 = 473 \text{ bar.}$

Example 3

An RC-256 cylinder is required to produce a force of 190.000 N. What pressure is required?

Pressure = $190.000 \text{ N} \div 33,2 \text{ cm}^2 = 5722,9 \text{ N/cm}^2 = 572 \text{ bar.}$

Example 4

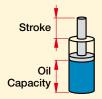
Four RC-308 cylinders are required to produce a force of 800.000 N. What pressure is required?

Pressure = $800.000 \text{ N} \div (4 \times 42,1 \text{ cm}^2) = 4750,6 \text{ N/cm}^2 = 476 \text{ bar.}$ Remember, since four cylinders are used together, the area for one cylinder must be multiplied by the number of cylinders used.

Example 5

A CLL-2506 cylinder is going to be used with a power source that is capable of 500 bar. What is the theoretical force available from that cylinder?

Force = $5000 \text{ N/cm}^2 \text{ x } 366,4 \text{ cm}^2 = 1.832.000 \text{ N} = 1832 \text{ kN}.$


Cylinder Oil Capacity

The volume of oil required for a cylinder (cylinder oil capacity) is equal to the effective area of the cylinder times the stroke*.

Example 1:

An RC-158 cylinder with 20,3 cm² effective area and 200 mm stroke requires what volume of oil?

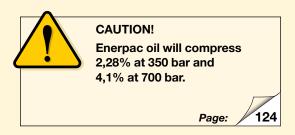
Oil Capacity = $20.3 \text{ cm}^2 \text{ x } 20 \text{ cm} = 406 \text{ cm}^3$

Example 2:

An RC-5013 cylinder has an effective area of 71,2 cm² and a stroke of 320 mm. How much oil will be required? **Oil Capacity** = 71,2 cm² x 32 cm = 2278,4 cm³

Example 3:

An RC-10010 cylinder has an effective area of 133,3 cm² and a stroke of 260 mm. How much oil will it require?


Oil Capacity = 133,3 cm² x 26 cm = 3466 cm³

Example 4:

Four RC-308 cylinders are being used, each with an effective area of 42,1 cm 2 and a stroke of 209 mm. How much oil will be required? **Oil Capacity** = 42,1 cm 2 x 20,9 cm = 880 cm 3 for one cylinder Multiply by four to obtain the required capacity: 3520 cm 3

* Note: these are theoretical examples and do not take into account the compressibility of oil under high pressure.

